Kinetics of the Cl(²P_J) + CH₄ Reaction: Effects of Secondary Chemistry Below 300 K

J. J. Wang and Leon F. Keyser

Abstract

atmospheric chemistory

Absolute rate data for the $Cl(^2P_1) + CH_4 \rightarrow HCl + CH_3$ reaction have been obtained from 218 to 298 K by using the discharge-flow resonance fluorescence technique at 1 Torr total pressure. The result at 298 K is $(10.1 \pm 0.6) \times 10^{-14}$ cm³ molecule $^{-1}$ s $^{-1}$. The temperature dependence in Arrhenius form is $(6.5 \pm 0.9) \times 10^{-12}$ $\exp[(-1235 \pm 34) / T]$. The errors given are one standard deviation; overall experimental error is estimated at \pm 15%. Because of the relatively large disagreement among earlier measurements at low temperatures, the results were examined for possible effects of non-Boltzmann spin distribution and vibrational excitation of CH₄, secondary chemistry of CH₃ radicals, and impuities in the CH₄ source. There was no significant change in the observed rate constant when an efficient spin quencher, CF₄, was added and estimates indicate that vibrational partitioning in CH₄ should be at the ambient reactor temperature before the start of the reaction. The results were also independent of the source of Cl atoms (microwave discharge or thermal decomposition of Cl₂) and whether CH₄ was purified in-situ. However, the observed rate constant did depend on initial Cl atom concentrations and to a lesser extent on CH₄ concentrations. Numerical simulations were used to assess the importance of secondary chemistry over a range of reactant concentrations